Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Virol ; 97(4): e0193222, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37022231

RESUMO

High-throughput sequences were generated from DNA and cDNA from four Southern white rhinoceros (Ceratotherium simum simum) located in the Taronga Western Plain Zoo in Australia. Virome analysis identified reads that were similar to Mus caroli endogenous gammaretrovirus (McERV). Previous analysis of perissodactyl genomes did not recover gammaretroviruses. Our analysis, including the screening of the updated white rhinoceros (Ceratotherium simum) and black rhinoceros (Diceros bicornis) draft genomes identified high-copy orthologous gammaretroviral ERVs. Screening of Asian rhinoceros, extinct rhinoceros, domestic horse, and tapir genomes did not identify related gammaretroviral sequences in these species. The newly identified proviral sequences were designated SimumERV and DicerosERV for the white and black rhinoceros retroviruses, respectively. Two long terminal repeat (LTR) variants (LTR-A and LTR-B) were identified in the black rhinoceros, with different copy numbers associated with each (n = 101 and 373, respectively). Only the LTR-A lineage (n = 467) was found in the white rhinoceros. The African and Asian rhinoceros lineages diverged approximately 16 million years ago. Divergence age estimation of the identified proviruses suggests that the exogenous retroviral ancestor of the African rhinoceros ERVs colonized their genomes within the last 8 million years, a result consistent with the absence of these gammaretroviruses from Asian rhinoceros and other perissodactyls. The black rhinoceros germ line was colonized by two lineages of closely related retroviruses and white rhinoceros by one. Phylogenetic analysis indicates a close evolutionary relationship with ERVs of rodents including sympatric African rats, suggesting a possible African origin of the identified rhinoceros gammaretroviruses. IMPORTANCE Rhinoceros genomes were thought to be devoid of gammaretroviruses, as has been determined for other perissodactyls (horses, tapirs, and rhinoceros). While this may be true of most rhinoceros, the African white and black rhinoceros genomes have been colonized by evolutionarily young gammaretroviruses (SimumERV and DicerosERV for the white and black rhinoceros, respectively). These high-copy endogenous retroviruses (ERVs) may have expanded in multiple waves. The closest relative of SimumERV and DicerosERV is found in rodents, including African endemic species. Restriction of the ERVs to African rhinoceros suggests an African origin for the rhinoceros gammaretroviruses.


Assuntos
Evolução Biológica , Retrovirus Endógenos , Gammaretrovirus , Perissodáctilos , Animais , Camundongos , Ratos , Retrovirus Endógenos/classificação , Retrovirus Endógenos/genética , Gammaretrovirus/classificação , Gammaretrovirus/genética , Cavalos/genética , Cavalos/virologia , Perissodáctilos/genética , Perissodáctilos/virologia , Filogenia , Provírus/genética
2.
Retrovirology ; 17(1): 34, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33008414

RESUMO

BACKGROUND: Koalas are infected with the koala retrovirus (KoRV) that exists as exogenous or endogenous viruses. KoRV is genetically diverse with co-infection with up to ten envelope subtypes (A-J) possible; KoRV-A is the prototype endogenous form. KoRV-B, first found in a small number of koalas with an increased leukemia prevalence at one US zoo, has been associated with other cancers and increased chlamydial disease. To better understand the molecular epidemiology of KoRV variants and the effect of increased viral loads (VLs) on transmissibility and pathogenicity we developed subtype-specific quantitative PCR (qPCR) assays and tested blood and tissue samples from koalas at US zoos (n = 78), two Australian zoos (n = 27) and wild-caught (n = 21) in Australia. We analyzed PCR results with available clinical, demographic, and pedigree data. RESULTS: All koalas were KoRV-A-infected. A small number of koalas (10.3%) at one US zoo were also infected with non-A subtypes, while a higher non-A subtype prevalence (59.3%) was found in koalas at Australian zoos. Wild koalas from one location were only infected with KoRV-A. We observed a significant association of infection and plasma VLs of non-A subtypes in koalas that died of leukemia/lymphoma and other neoplasias and report cancer diagnoses in KoRV-A-positive animals. Infection and VLs of non-A subtypes was not associated with age or sex. Transmission of non-A subtypes occurred from dam-to-offspring and likely following adult-to-adult contact, but associations with contact type were not evaluated. Brief antiretroviral treatment of one leukemic koala infected with high plasma levels of KoRV-A, -B, and -F did not affect VL or disease progression. CONCLUSIONS: Our results show a significant association of non-A KoRV infection and plasma VLs with leukemia and other cancers. Although we confirm dam-to-offspring transmission of these variants, we also show other routes are possible. Our validated qPCR assays will be useful to further understand KoRV epidemiology and its zoonotic transmission potential for humans exposed to koalas because KoRV can infect human cells.


Assuntos
Gammaretrovirus/genética , Phascolarctidae/virologia , Infecções por Retroviridae/veterinária , Infecções Tumorais por Vírus/veterinária , Animais , Animais Selvagens , Animais de Zoológico , Austrália/epidemiologia , Feminino , Gammaretrovirus/classificação , Gammaretrovirus/isolamento & purificação , Gammaretrovirus/patogenicidade , Variação Genética , Masculino , Epidemiologia Molecular , Reação em Cadeia da Polimerase/veterinária , Prevalência , RNA Viral/genética , Infecções por Retroviridae/epidemiologia , Infecções por Retroviridae/transmissão , Infecções por Retroviridae/virologia , Infecções Tumorais por Vírus/epidemiologia , Infecções Tumorais por Vírus/transmissão , Infecções Tumorais por Vírus/virologia , Estados Unidos/epidemiologia , Carga Viral
3.
Arch Virol ; 165(11): 2409-2417, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32770481

RESUMO

Koala retrovirus (KoRV) is a major threat to koala health and conservation. It also represents a series of challenges across the fields of virology, immunology, and epidemiology that are of great potential interest to any researcher in the field of retroviral diseases. KoRV is a gammaretrovirus that is present in both endogenous and exogenous forms in koala populations, with a still-active endogenization process. KoRV may induce immunosuppression and neoplastic conditions such as lymphoma and leukemia and play a role in chlamydiosis and other diseases in koalas. KoRV transmission modes, pathogenesis, and host immune response still remain unclear, and a clear understanding of these areas is critical for devising effective preventative and therapeutic strategies. Research on KoRV is clearly critical for koala conservation. In this review, we provide an overview of the current understanding and future challenges related to KoRV epidemiology, transmission mode, pathogenesis, and host immune response and discuss prospects for therapeutic and preventive vaccines.


Assuntos
Gammaretrovirus/classificação , Transmissão Vertical de Doenças Infecciosas , Phascolarctidae/virologia , Infecções por Retroviridae/veterinária , Sequência de Aminoácidos , Animais , Austrália/epidemiologia , Infecções por Chlamydia/veterinária , Infecções por Chlamydia/virologia , Evolução Molecular , Neoplasias/veterinária , Neoplasias/virologia , Phascolarctidae/imunologia , Infecções por Retroviridae/epidemiologia , Infecções por Retroviridae/transmissão
4.
Arch Virol ; 165(1): 157-167, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31748876

RESUMO

Endogenous retroviruses of domestic cats (ERV-DCs) are members of the genus Gammaretrovirus that infect domestic cats (Felis silvestris catus). Uniquely, domestic cats harbor replication-competent proviruses such as ERV-DC10 (ERV-DC18) and ERV-DC14 (xenotropic and nonecotropic viruses, respectively). The purpose of this study was to assess invasion by two distinct infectious ERV-DCs, ERV-DC10 and ERV-DC14, in domestic cats. Of a total sample of 1646 cats, 568 animals (34.5%) were positive for ERV-DC10 (heterozygous: 377; homozygous: 191), 68 animals (4.1%) were positive for ERV-DC14 (heterozygous: 67; homozygous: 1), and 10 animals (0.6%) were positive for both ERV-DC10 and ERV-DC14. ERV-DC10 and ERV-DC14 were detected in domestic cats in Japan as well as in Tanzania, Sri Lanka, Vietnam, South Korea and Spain. Breeding cats, including Singapura, Norwegian Forest and Ragdoll cats, showed high frequencies of ERV-DC10 (60-100%). By contrast, ERV-DC14 was detected at low frequency in breeding cats. Our results suggest that ERV-DC10 is widely distributed while ERV-DC14 is maintained in a minor population of cats. Thus, ERV-DC10 and ERV-DC14 have invaded cat populations independently.


Assuntos
Gammaretrovirus/classificação , Técnicas de Genotipagem/métodos , Infecções por Retroviridae/epidemiologia , Animais , Animais Domésticos , Ásia , Cruzamento , Gatos , Gammaretrovirus/genética , Gammaretrovirus/isolamento & purificação , Noruega , Filogenia , Filogeografia , Infecções por Retroviridae/virologia , Espanha , Tanzânia
5.
Arch Virol ; 164(11): 2735-2745, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31486907

RESUMO

Koala retrovirus (KoRV) is unique among endogenous retroviruses because its endogenization is still active. Two major KoRV subtypes, KoRV-A and B, have been described, and KoRV-B is associated with disease and poses a health threat to koalas. Here, we investigated the co-prevalence of KoRV-A and KoRV-B, detected by type-specific PCR and sequencing, and their impact on the health of koalas in three Japanese zoos. We also investigated KoRV proviral loads and found varying amounts of genomic DNA (gDNA) in peripheral blood mononuclear cells (PBMCs). We found that 100% of the koalas examined were infected with KoRV-A and 60% (12/20) were coinfected with KoRV-B. The KoRV-A sequence was highly conserved, whereas the KoRV-B sequence varied among individuals. Interestingly, we observed possible vertical transmission of KoRV-B in one offspring in which the KoRV-B sequence was similar to that of the father but not the mother. Moreover, we characterized the KoRV growth patterns in concanavalin-A-stimulated PBMCs isolated from KoRV-B-coinfected or KoRV-B-uninfected koalas. We quantified the KoRV provirus in gDNA and the KoRV RNA copy numbers in cells and culture supernatants by real-time PCR at days 4, 7, and 14 post-seeding. As the study population is housed in captivity, a longitudinal study of these koalas may provide an opportunity to study the transmission mode of KoRV-B. In addition, we characterized KoRV isolates by infecting tupaia cells. The results suggested that tupaia may be used as an infection model for KoRV. Thus, this study may enhance our understanding of KoRV-B coinfection and transmission in the captive koalas.


Assuntos
Retrovirus Endógenos/genética , Gammaretrovirus/patogenicidade , Phascolarctidae/virologia , Infecções por Retroviridae/epidemiologia , Infecções por Retroviridae/veterinária , Animais , Animais de Zoológico/virologia , Linhagem Celular , Coinfecção/veterinária , Coinfecção/virologia , Retrovirus Endógenos/classificação , Retrovirus Endógenos/isolamento & purificação , Feminino , Gammaretrovirus/classificação , Gammaretrovirus/genética , Gammaretrovirus/isolamento & purificação , Japão/epidemiologia , Masculino , Provírus/genética , Infecções por Retroviridae/virologia , Tupaia/virologia , Carga Viral
6.
Arch Virol ; 164(3): 757-765, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30656465

RESUMO

Koala retrovirus (KoRV) is a gammaretrovirus that is becoming endogenous in koalas. Here, we explored the dynamics of KoRV infection in captive koalas in Japan. We isolated peripheral blood mononuclear cells (PBMCs) from 11 koalas, from which we extracted the KoRV genome. We found the prevalence of KoRV provirus in the koalas to be 100%, and the copy number of KoRV proviral DNA in genomic DNA isolated from PBMCs was variable. The KoRV envelope genes from 11 koalas were sequenced and all were found to be KoRV type A. Nucleotide substitution analysis revealed differences in the KoRV env gene sequences of parents and their offspring. Although no viral KoRV RNA was detected in plasma of healthy koalas, a high copy number was found in plasma of a diseased koala (#6). Hematological analysis showed a high white blood cell (WBC) count in the blood of koala #6. Notably, when retested ~ 5 months later, koala #6 was found to be negative for KoRV in plasma, and the WBC count was within the normal range. Therefore, KoRV in the plasma could be a possible indicator of koala health. We also investigated KoRV growth in concanavalin-A-stimulated koala PBMCs by measuring the KoRV provirus copy number in gDNA and the KoRV RNA copy number in cells and culture supernatants by real-time PCR at days 4, 7, and 14 post-culture. We also observed that KoRV isolates were able to infect HEK293T cells. These findings could enhance our understanding of the dynamics of KoRV and its pathogenesis in koalas.


Assuntos
Gammaretrovirus/genética , Gammaretrovirus/isolamento & purificação , Phascolarctidae/virologia , Infecções por Retroviridae/veterinária , Animais , Feminino , Gammaretrovirus/classificação , Células HEK293 , Humanos , Japão , Leucócitos Mononucleares/virologia , Masculino , RNA Viral/genética , Infecções por Retroviridae/virologia
7.
Microbiol Mol Biol Rev ; 82(1)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29237726

RESUMO

Viruses of the subfamily Orthoretrovirinae are defined by the ability to reverse transcribe an RNA genome into DNA that integrates into the host cell genome during the intracellular virus life cycle. Exogenous retroviruses (XRVs) are horizontally transmitted between host individuals, with disease outcome depending on interactions between the retrovirus and the host organism. When retroviruses infect germ line cells of the host, they may become endogenous retroviruses (ERVs), which are permanent elements in the host germ line that are subject to vertical transmission. These ERVs sometimes remain infectious and can themselves give rise to XRVs. This review integrates recent developments in the phylogenetic classification of retroviruses and the identification of retroviral receptors to elucidate the origins and evolution of XRVs and ERVs. We consider whether ERVs may recurrently pressure XRVs to shift receptor usage to sidestep ERV interference. We discuss how related retroviruses undergo alternative fates in different host lineages after endogenization, with koala retrovirus (KoRV) receiving notable interest as a recent invader of its host germ line. KoRV is heritable but also infectious, which provides insights into the early stages of germ line invasions as well as XRV generation from ERVs. The relationship of KoRV to primate and other retroviruses is placed in the context of host biogeography and the potential role of bats and rodents as vectors for interspecies viral transmission. Combining studies of extant XRVs and "fossil" endogenous retroviruses in koalas and other Australasian species has broadened our understanding of the evolution of retroviruses and host-retrovirus interactions.


Assuntos
Retrovirus Endógenos/classificação , Evolução Molecular , Gammaretrovirus/classificação , Infecções por Retroviridae/transmissão , Infecções Tumorais por Vírus/transmissão , Zoonoses/transmissão , Animais , Reservatórios de Doenças , Retrovirus Endógenos/genética , Gammaretrovirus/genética , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Phascolarctidae/virologia , Filogenia , Filogeografia , Ratos , Infecções por Retroviridae/virologia , Infecções Tumorais por Vírus/virologia , Zoonoses/virologia
8.
J Virol ; 92(5)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29237837

RESUMO

The recent acquisition of a novel retrovirus (KoRV) by koalas (Phascolarctos cinereus) has created new opportunities for retroviral research and new challenges for koala conservation. There are currently two major subtypes of KoRV: KoRV-A, which is believed to be endogenous only in koalas from the northern part of Australia, and KoRV-B, which appears to be exogenous. Understanding and management of these subtypes require population level studies of their prevalence and diversity, especially when coinfected in the same population, and investigations of their modes of transmission in the wild. Toward this end, we studied a wild Queensland koala population of 290 animals over a 5-year period and investigated the prevalence, diversity and mode of transmission of KoRV-A and KoRV-B. We found KoRV-A to have an infection level of 100% in the population, with all animals sharing the same dominant envelope protein sequence. In contrast, the KoRV-B infection prevalence was only 24%, with 21 different envelope protein sequence variants found in the 83 KoRV-B-positive animals. Linked to severe disease outcomes, a significant association between KoRV-B positivity and both chlamydial disease and neoplasia was found in the population. Transmission of KoRV-B was found at a rate of 3% via adult-to-adult contact per year, while there was a 100% rate of KoRV-B-positive mothers transmitting the virus to their joeys. Collectively, these findings demonstrate KoRV-B as the pathogenic subtype in this wild koala population and inform future intervention strategies with subtype variation and transmission data. IMPORTANCE KoRV represents a unique opportunity to study a relatively young retrovirus as it goes through its molecular evolution in both an endogenous form and a more recently evolved exogenous form. The endogenous form, KoRV-A, now appears to have stably and completely established itself in Northern Australian koala populations and is progressing south. Conversely, the exogenous form, KoRV-B, is undergoing continuous mutation and spread in the north and, as yet, has not reached all southern koala populations. We can now link KoRV-B to neoplasia and chlamydial disease in both wild and captive koalas, making it an imminent threat to this already vulnerable species. This work represents the largest study of koalas in a wild population with respect to KoRV-A/KoRV-B-infected/coinfected animals and the linkage of this infection to chlamydial disease, neoplasia, viral evolution, and spread.


Assuntos
Infecções por Chlamydia/epidemiologia , Gammaretrovirus/classificação , Produtos do Gene env/genética , Transmissão Vertical de Doenças Infecciosas , Infecções por Retroviridae/epidemiologia , Infecções por Retroviridae/transmissão , Infecções Tumorais por Vírus/epidemiologia , Infecções Tumorais por Vírus/veterinária , Sequência de Aminoácidos , Animais , Austrália/epidemiologia , Evolução Molecular , Feminino , Gammaretrovirus/genética , Masculino , Neoplasias/veterinária , Neoplasias/virologia , Phascolarctidae/virologia , Infecções por Retroviridae/veterinária , Infecções por Retroviridae/virologia , Infecções Tumorais por Vírus/transmissão , Infecções Tumorais por Vírus/virologia
9.
Virology ; 507: 140-150, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28437635

RESUMO

Porcine endogenous retrovirus-A (PERV-A), a gammaretrovirus, infects human cells in vitro, thus raising the potential risk of cross-species transmission in xenotransplantation. Two members of the solute carrier family 52 (SLC52A1 and SLC52A2) are PERV-A receptors. Site-directed mutagenesis of the cDNA encoding SLC52A1 identified that only one of two putative glycosylation signals is occupied by glycans. In addition, we showed that glycosylation of SLC52A1 is not necessary for PERV-A receptor function. We also identified that at a minimum, three cysteine residues are sufficient for SLC52A1 cell surface expression. Mutation of cysteine at position 365 and either of the two cysteine residues in the C-terminal tail at positions 442 or 446 reduced SLC52A1 surface expression and PERV-A infection suggesting that these residues may contribute to overall structural stability and receptor function. Understanding interactions between PERV-A and its cellular receptor may provide novel strategies to prevent zoonotic infection in the setting of xenotransplantation.


Assuntos
Cisteína/metabolismo , Retrovirus Endógenos/patogenicidade , Gammaretrovirus/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Virais/química , Receptores Virais/metabolismo , Infecções por Retroviridae/veterinária , Doenças dos Suínos/metabolismo , Animais , Cisteína/química , Cisteína/genética , Retrovirus Endógenos/genética , Retrovirus Endógenos/fisiologia , Gammaretrovirus/classificação , Gammaretrovirus/genética , Glicosilação , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Virais/genética , Infecções por Retroviridae/genética , Infecções por Retroviridae/metabolismo , Infecções por Retroviridae/virologia , Suínos , Doenças dos Suínos/genética , Doenças dos Suínos/virologia , Virulência
10.
J Virol ; 91(3)2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27881645

RESUMO

Koala populations are in serious decline across many areas of mainland Australia, with infectious disease a contributing factor. Koala retrovirus (KoRV) is a gammaretrovirus present in most wild koala populations and captive colonies. Five subtypes of KoRV (A to E) have been identified based on amino acid sequence divergence in a hypervariable region of the receptor binding domain of the envelope protein. However, analysis of viral genetic diversity has been conducted primarily on KoRV in captive koalas housed in zoos in Japan, the United States, and Germany. Wild koalas within Australia have not been comparably assessed. Here we report a detailed analysis of KoRV genetic diversity in samples collected from 18 wild koalas from southeast Queensland. By employing deep sequencing we identified 108 novel KoRV envelope sequences and determined their phylogenetic diversity. Genetic diversity in KoRV was abundant and fell into three major groups; two comprised the previously identified subtypes A and B, while the third contained the remaining hypervariable region subtypes (C, D, and E) as well as four hypervariable region subtypes that we newly define here (F, G, H, and I). In addition to the ubiquitous presence of KoRV-A, which may represent an exclusively endogenous variant, subtypes B, D, and F were found to be at high prevalence, while subtypes G, H, and I were present in a smaller number of animals. IMPORTANCE: Koala retrovirus (KoRV) is thought to be a significant contributor to koala disease and population decline across mainland Australia. This study is the first to determine KoRV subtype prevalence among a wild koala population, and it significantly expands the total number of KoRV sequences available, providing a more precise picture of genetic diversity. This understanding of KoRV subtype prevalence and genetic diversity will be important for conservation efforts attempting to limit the spread of KoRV. Furthermore, KoRV is one of the only retroviruses shown to exist in both endogenous (transmitted vertically to offspring in the germ line DNA) and exogenous (horizontally transmitted between infected individuals) forms, a division of fundamental evolutionary importance.


Assuntos
Gammaretrovirus/classificação , Gammaretrovirus/genética , Variação Genética , Phascolarctidae/virologia , Filogenia , Infecções por Retroviridae/veterinária , Animais , Animais Selvagens , Evolução Molecular , Feminino , Produtos do Gene env , Masculino , Motivos de Nucleotídeos , Filogeografia , Recombinação Genética
11.
Viruses ; 8(12)2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27999419

RESUMO

Transspecies transmission of retroviruses is a frequent event, and the human immunodeficiency virus-1 (HIV-1) is a well-known example. The gibbon ape leukaemia virus (GaLV) and koala retrovirus (KoRV), two gammaretroviruses, are also the result of a transspecies transmission, however from a still unknown host. Related retroviruses have been found in Southeast Asian mice although the sequence similarity was limited. Viruses with a higher sequence homology were isolated from Melomys burtoni, the Australian and Indonesian grassland melomys. However, only the habitats of the koalas and the grassland melomys in Australia are overlapping, indicating that the melomys virus may not be the precursor of the GaLV. Viruses closely related to GaLV/KoRV were also detected in bats. Therefore, given the fact that the habitats of the gibbons in Thailand and the koalas in Australia are far away, and that bats are able to fly over long distances, the hypothesis that retroviruses of bats are the origin of GaLV and KoRV deserves consideration. Analysis of previous transspecies transmissions of retroviruses may help to evaluate the potential of transmission of related retroviruses in the future, e.g., that of porcine endogenous retroviruses (PERVs) during xenotransplantation using pig cells, tissues or organs.


Assuntos
Transmissão de Doença Infecciosa , Evolução Molecular , Gammaretrovirus/classificação , Gammaretrovirus/genética , Infecções por Retroviridae/veterinária , Animais , Austrália , Quirópteros , Gammaretrovirus/isolamento & purificação , Hylobates , Camundongos , Phascolarctidae , Infecções por Retroviridae/virologia , Tailândia
12.
Virology ; 485: 96-103, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26218214

RESUMO

Endogenous retroviruses (ERVs) were acquired during evolution of their host organisms after infection and mendelian inheritance in the germline by their exogenous counterparts. The ERVs can spread in the host genome and in some cases they affect the host phenotype. The cervid endogenous gammaretrovirus (CrERV) is one of only a few well-defined examples of evolutionarily recent invasion of mammalian genome by retroviruses. Thousands of insertionally polymorphic CrERV integration sites have been detected in wild ranging mule deer (Odocoileus hemionus) host populations. Here, we describe for the first time induction of replication competent CrERV by cocultivation of deer and human cells. We characterize the physical properties and tropism of the induced virus. The genomic sequence of the induced virus is phylogenetically related to the evolutionarily young endogenous CrERVs described so far. We also describe the level of replication block of CrERV on deer cells and its capacity to establish superinfection interference.


Assuntos
Cervos/virologia , Retrovirus Endógenos/genética , Gammaretrovirus/genética , Genoma Viral , Vírion/genética , Animais , Evolução Biológica , Linhagem Celular Tumoral , Técnicas de Cocultura , Retrovirus Endógenos/classificação , Retrovirus Endógenos/isolamento & purificação , Retrovirus Endógenos/ultraestrutura , Células Epiteliais/ultraestrutura , Células Epiteliais/virologia , Gammaretrovirus/classificação , Gammaretrovirus/isolamento & purificação , Gammaretrovirus/ultraestrutura , Células HEK293 , Humanos , Filogenia , Vírion/isolamento & purificação , Vírion/ultraestrutura , Replicação Viral
13.
Annu Rev Virol ; 2(1): 119-34, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26958909

RESUMO

A retroviral etiology for malignant neoplasias in koalas has long been suspected. Evidence for retroviral involvement was bolstered in 2000 by the isolation of a koala retrovirus (KoRV), now termed KoRV-A. KoRV-A is an endogenous retrovirus-a retrovirus that infects germ cells-a feature that makes it a permanent resident of the koala genome. KoRV-A lacks the genetic diversity of an exogenous retrovirus, a quality associated with the ability of a retrovirus to cause neoplasias. In 2013, a second KoRV isolate, KoRV-B, was obtained from koalas with lymphomas in the Los Angeles Zoo. Unlike KoRV-A, which is present in the genomes of all koalas in the United States, KoRV-B is restricted in its distribution and is associated with host pathology (neoplastic disease). Here, our current understanding of the evolution of endogenous and exogenous KoRVs, and the relationship between them, is reviewed to build a perspective on the future impact of these viruses on koala sustainability.


Assuntos
Evolução Biológica , Retrovirus Endógenos/genética , Gammaretrovirus/genética , Phascolarctidae/virologia , Infecções por Retroviridae/veterinária , Animais , Retrovirus Endógenos/classificação , Retrovirus Endógenos/isolamento & purificação , Retrovirus Endógenos/fisiologia , Gammaretrovirus/classificação , Gammaretrovirus/isolamento & purificação , Gammaretrovirus/fisiologia , Infecções por Retroviridae/virologia
14.
PLoS One ; 9(1): e87194, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24489870

RESUMO

The prediction of viral zoonosis epidemics has become a major public health issue. A profound understanding of the viral population in key animal species acting as reservoirs represents an important step towards this goal. Bats harbor diverse viruses, some of which are of particular interest because they cause severe human diseases. However, little is known about the diversity of the global population of viruses found in bats (virome). We determined the viral diversity of five different French insectivorous bat species (nine specimens in total) in close contact with humans. Sequence-independent amplification, high-throughput sequencing with Illumina technology and a dedicated bioinformatics analysis pipeline were used on pooled tissues (brain, liver and lungs). Comparisons of the sequences of contigs and unassembled reads provided a global taxonomic distribution of virus-related sequences for each sample, highlighting differences both within and between bat species. Many viral families were present in these viromes, including viruses known to infect bacteria, plants/fungi, insects or vertebrates, the most relevant being those infecting mammals (Retroviridae, Herpesviridae, Bunyaviridae, Poxviridae, Flaviviridae, Reoviridae, Bornaviridae, Picobirnaviridae). In particular, we detected several new mammalian viruses, including rotaviruses, gammaretroviruses, bornaviruses and bunyaviruses with the identification of the first bat nairovirus. These observations demonstrate that bats naturally harbor viruses from many different families, most of which infect mammals. They may therefore constitute a major reservoir of viral diversity that should be analyzed carefully, to determine the role played by bats in the spread of zoonotic viral infections.


Assuntos
Bornaviridae/genética , Quirópteros/virologia , Gammaretrovirus/genética , Nairovirus/genética , Rotavirus/genética , Animais , Bornaviridae/classificação , Bornaviridae/isolamento & purificação , Feminino , França , Gammaretrovirus/classificação , Gammaretrovirus/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Metagenoma , Dados de Sequência Molecular , Nairovirus/classificação , Nairovirus/isolamento & purificação , Filogenia , RNA Viral/genética , Rotavirus/classificação , Rotavirus/isolamento & purificação , Análise de Sequência de RNA
15.
FEBS Lett ; 588(1): 41-6, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24239536

RESUMO

Koala retrovirus (KoRV) is a gammaretrovirus which may induce immune suppression, leukemia and lymphoma in koalas. Currently three KoRV subgroups (A, B, and J) have been reported. Our phylogenetic analysis suggests that KoRV-B and KoRV-J should be classified as the same subgroup. In long terminal repeat (LTR), a KoRV-B isolate has four 17 bp tandem repeats named direct repeat (DR)-1, while a KoRV-J isolate (strain OJ-4) has three 37 bp tandem repeats named DR-2. We also found that the promoter activity of the KoRV-J strain OJ-4 is stronger than that of original KoRV-A, suggesting that KoRV-J may replicate more efficiently than KoRV-A.


Assuntos
Gammaretrovirus/genética , Produtos do Gene env/genética , Phascolarctidae/virologia , Sequências Repetidas Terminais/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Linhagem Celular Tumoral , Gammaretrovirus/classificação , Gammaretrovirus/isolamento & purificação , Produtos do Gene env/classificação , Células HEK293 , Humanos , Células Jurkat , Células K562 , Luciferases/genética , Luciferases/metabolismo , Dados de Sequência Molecular , Filogenia , Regiões Promotoras Genéticas/genética , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Células U937
16.
Retrovirology ; 10: 108, 2013 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-24148555

RESUMO

Koala retroviruses (KoRV) have been isolated from wild and captive koalas in Australia as well as from koala populations held in zoos in other countries. They are members of the genus Gammaretrovirus, are most closely related to gibbon ape leukemia virus (GaLV), feline leukemia virus (FeLV) and porcine endogenous retrovirus (PERV) and are likely the result of a relatively recent trans-species transmission from rodents or bats. The first KoRV to be isolated, KoRV-A, is widely distributed in the koala population in both integrated endogenous and infectious exogenous forms with evidence from museum specimens older than 150 years, indicating a relatively long engagement with the koala population. More recently, additional subtypes of KoRV that are not endogenized have been identified based on sequence differences and host cell receptor specificity (KoRV-B and KoRV-J). A specific association with fatal lymphoma and leukemia has been recently suggested for KoRV-B. In addition, it has been proposed that the high viral loads found in many animals may lead to immunomodulation resulting in a higher incidence of diseases such as chlamydiosis. Although the molecular basis of this immunomodulation is still unclear, purified KoRV particles and a peptide corresponding to a highly conserved domain in the envelope protein have been shown to modulate cytokine expression in vitro, similar to that induced by other gammaretroviruses. While much is still to be learned, KoRV induced lymphoma/leukemia and opportunistic disease arising as a consequence of immunomodulation are likely to play an important role in the stability of koala populations both in the wild and in captivity.


Assuntos
Gammaretrovirus/classificação , Gammaretrovirus/isolamento & purificação , Phascolarctidae/virologia , Infecções por Retroviridae/veterinária , Animais , Gammaretrovirus/genética , Incidência , Infecções por Retroviridae/epidemiologia , Infecções por Retroviridae/patologia , Infecções por Retroviridae/virologia
17.
J Gen Virol ; 93(Pt 9): 2037-2045, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22694899

RESUMO

A previous phylogenetic study suggested that mammalian gammaretroviruses may have originated in bats. Here we report the discovery of RNA transcripts from two putative endogenous gammaretroviruses in frugivorous (Rousettus leschenaultii retrovirus, RlRV) and insectivorous (Megaderma lyra retrovirus, MlRV) bat species. Both genomes possess a large deletion in pol, indicating that they are defective retroviruses. Phylogenetic analysis places RlRV and MlRV within the diversity of mammalian gammaretroviruses, with the former falling closer to porcine endogenous retroviruses and the latter to Mus dunni endogenous virus, koala retrovirus and gibbon ape leukemia virus. Additional genomic mining suggests that both microbat (Myotis lucifugus) and megabat (Pteropus vampyrus) genomes harbour many copies of endogenous retroviral forms related to RlRV and MlRV. Furthermore, phylogenetic analysis reveals the presence of three genetically diverse groups of endogenous gammaretroviruses in bat genomes, with M. lucifugus possessing members of all three groups. Taken together, this study indicates that bats harbour distinct gammaretroviruses and may have played an important role as reservoir hosts during the diversification of mammalian gammaretroviruses.


Assuntos
Quirópteros/virologia , Retrovirus Endógenos/isolamento & purificação , Gammaretrovirus/isolamento & purificação , Animais , Biodiversidade , Quirópteros/classificação , Retrovirus Endógenos/classificação , Retrovirus Endógenos/genética , Evolução Molecular , Gammaretrovirus/classificação , Gammaretrovirus/genética , Camundongos , Dados de Sequência Molecular , Filogenia
18.
J Virol ; 86(8): 4288-93, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22318134

RESUMO

Gammaretroviruses infect a wide range of vertebrate species where they are associated with leukemias, neurological diseases and immunodeficiencies. However, the origin of these infectious agents is unknown. Through a phylogenetic analysis of viral gene sequences, we show that bats harbor an especially diverse set of gammaretroviruses. In particular, phylogenetic analysis places Rhinolophus ferrumequinum retrovirus (RfRV), a new gammaretrovirus identified by de novo analysis of the Rhinolophus ferrumequinum transcriptome, and six other gammaretroviruses from different bat species, as basal to other mammalian gammaretroviruses. An analysis of the similarity in the phylogenetic history between the gammaretroviruses and their bat hosts provided evidence for both host-virus codivergence and cross-species transmission. Taken together, these data provide new insights into the origin of the mammalian gammaretroviruses.


Assuntos
Quirópteros/virologia , Gammaretrovirus/genética , Animais , Evolução Molecular , Gammaretrovirus/classificação , Ordem dos Genes , Produtos do Gene gag/genética , Produtos do Gene pol/genética , Genoma Viral , Dados de Sequência Molecular , Filogenia , Transcriptoma
19.
J Virol ; 86(5): 2787-96, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22190723

RESUMO

Endogenous retroviruses constitute a significant genomic fraction in all mammalian species. Typically they are evolutionarily old and fixed in the host species population. Here we report on a novel endogenous gammaretrovirus (CrERVγ; for cervid endogenous gammaretrovirus) in the mule deer (Odocoileus hemionus) that is insertionally polymorphic among individuals from the same geographical location, suggesting that it has a more recent evolutionary origin. Using PCR-based methods, we identified seven CrERVγ proviruses and demonstrated that they show various levels of insertional polymorphism in mule deer individuals. One CrERVγ provirus was detected in all mule deer sampled but was absent from white-tailed deer, indicating that this virus originally integrated after the split of the two species, which occurred approximately one million years ago. There are, on average, 100 CrERVγ copies in the mule deer genome based on quantitative PCR analysis. A CrERVγ provirus was sequenced and contained intact open reading frames (ORFs) for three virus genes. Transcripts were identified covering the entire provirus. CrERVγ forms a distinct branch of the gammaretrovirus phylogeny, with the closest relatives of CrERVγ being endogenous gammaretroviruses from sheep and pig. We demonstrated that white-tailed deer (Odocoileus virginianus) and elk (Cervus canadensis) DNA contain proviruses that are closely related to mule deer CrERVγ in a conserved region of pol; more distantly related sequences can be identified in the genome of another member of the Cervidae, the muntjac (Muntiacus muntjak). The discovery of a novel transcriptionally active and insertionally polymorphic retrovirus in mammals could provide a useful model system to study the dynamic interaction between the host genome and an invading retrovirus.


Assuntos
Cervos/virologia , Retrovirus Endógenos/fisiologia , Gammaretrovirus/fisiologia , Polimorfismo Genético , Integração Viral , Animais , Cervos/genética , Retrovirus Endógenos/classificação , Retrovirus Endógenos/genética , Retrovirus Endógenos/isolamento & purificação , Gammaretrovirus/classificação , Gammaretrovirus/genética , Gammaretrovirus/isolamento & purificação , Dosagem de Genes , Genoma , Dados de Sequência Molecular , Filogenia
20.
Virology ; 422(2): 195-204, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22088214

RESUMO

Pooled genomic DNA from 10 dogs was subjected to polymerase chain reaction with primers targeting the retroviral pro/pol region. Sequence analysis of 120 clones obtained by PCR revealed 81 of retroviral origin. Subsequent analysis of the dog genome (CanFam 2.0) by BLAST investigation using degenerate PCR products and previously identified retroviral sequences permitted the identification of additional retroviral γ and ß sequences. A phylogenetic analysis using the retroviral protease (PR) and reverse transcriptase (RT) sequences in the dog genome resulted in identification of 17 γ and 7 ß families. In addition, we also identified 167 spuma-like ERV elements from CanFam 2.0 based on sequence homology to murine (Mu)ERV-L and human (H)ERV-L. Our results could contribute to the understanding of the influence of retroviruses in shaping the genome structure and altering gene expression by providing quantitative and locational information of ERV loci and their diversity in the dog genome.


Assuntos
Betaretrovirus/genética , Cães/genética , Cães/virologia , Retrovirus Endógenos/genética , Gammaretrovirus/genética , Reação em Cadeia da Polimerase/veterinária , Sequência de Aminoácidos , Animais , Betaretrovirus/classificação , Retrovirus Endógenos/classificação , Gammaretrovirus/classificação , Genoma , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase/métodos , Software , Spumavirus/classificação , Spumavirus/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...